2 Paul Bressler

نویسنده

  • PAUL BRESSLER
چکیده

The purpose of this note is to give a “coordinate free” construction and prove the uniqueness of the vertex algebroid which gives rise to the chiral de Rham complex of [GMS]. In order to do that, we adapt the strategy of [BD] to the setting of vertex agebroids. To this end we show that the stack EVAX of exact vertex algebroids on X is a torsor under the stack in Picard groupoids ECAX of exact Courant algebroids on X (and, in particular, is locally non-empty). Moreover, we show that that ECAX is naturally equivalent to the stack of ΩX d −→ Ω X -torsors. These facts are proven for X a manifold (C , (complex) analytic, smooth algebraic variety over C). We leave to the reader the obvious extension to differential graded manifolds. Given a manifold X, let X denote the differential graded manifold with the underlying space X and the structure sheaf OX♯ the de Rham complex of X. We show that ECAX♯ is, in fact, trivial. Together with local existence of vertex OX♯-algebroids this implies that there exists a unique up to a unique isomorphism vertex algebroid over the de Rham complex. We give a “coordinate-free” description of the unique vertex OX♯-algebroid in terms of generators and relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formality for Algebroid Stacks

We extend the formality theorem of M. Kontsevich from deformations of the structure sheaf on a manifold to deformations of gerbes.

متن کامل

The First Pontryagin Class

We give a natural obstruction theoretic interpretation to the first Pontryagin class in terms of Courant algebroids. As an application we calculate the class of the stack of algebras of chiral differential operators. In particular, we establish the existence and uniqueness of the chiral de Rham complex. Sverhu molot, snizu serp, Зto – nax, Sovetski gerb. Hoqexь жni, a hoqexь ku ...

متن کامل

Corneal injury secondary to accidental Surgilube exposure.

Author Affiliations: Universidade Nove de Julho, São Paulo, Brazil (Dr Lopes); and Retina Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine and Hospital, Baltimore, Maryland (Drs ZayitSoudry, Moshiri, S. B. Bressler, and N. M. Bressler). Correspondence: Dr N. M. Bressler, Wilmer Eye Institute, Maumenee 752, Johns Hopkins Hospital, 600 N Wolfe St, Baltimore, MD 21287-92...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008